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Abstract

Implicit Neural Representations (INRs) have been applied successfully for re-
construction tasks in computer vision. However, to the best of our knowledge,
using INRs for self-supervised visual recognition has not been explored. In this
work, we propose HyperMAE, an INR version of the masked autoencoder (MAE).
HyperMAE combines a transformer and a coordinate-MLP to form an efficient
decoder architecture that maps the patch coordinates to all pixels in the patch,
conditioned on the encoder outputs. The conditioning is implemented as the weight
modulation of the coordinate-MLP, which is an INR of the image. Compared
with the standard MAE, HyperMAE achieves comparable ImageNet-1k finetuning
accuracy with only 72.9% pretraining time using 56.5% GPU memory and 46.5%
pretraining time using 88.6% GPU memory. We hope our work could inspire
further investigation on INRs for self-supervised learning. The code is available at
https://github.com/cvlab-stonybrook/HyperMAE.
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Figure 1: Overview of HyperMAE

Recent progress in natural language process-
ing [1, 2, 3, 4] shows large-scale self-supervised
learning (SSL) with Transformers is a basis of
many powerful foundation models. Similarly
in computer vision, Masked image modeling
(MIM) [5, 6, 7, 8, 9, 10], a self-supervised learn-
ing paradigm, is very effective for pretraining
Vision Transformers (ViT). The Masked Autoen-
coder (MAE) [5] is a simple and efficient MIM
framework. MAE has an asymmetric ViT en-
coder/decoder architecture. The encoder which
is usually a deep ViT, processes only a small
portion of the image patches. The encoder out-
put is then padded with a learnable mask token
to match the size of the input image. Then a ViT
decoder is applied on top of it to reconstruct the
input image. Positional embedding (a function
of the patch coordinates) is added to mask tokens to guide the decoder to transform the masked token
into a reconstructed image patch at a specific location. Although avoiding computing on mask tokens
in the encoder reduces computation, the MAE decoder is still a Transformer that processes the full
length of tokens. This results in a decoder with quadratic complexity with respect to the number of
patches.
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In HyperMAE, we propose a new decoder that has two components, 1) the Patch Coordinate Multi-
layer Perceptron (PaCo-MLP) which maps patch coordinates to patch pixels for image reconstruction
and 2) Feat2W, a light-weight transformer that transforms the encoder output to weight vectors, which
modulate the weights in PaCo-MLP. In contrast to the MAE decoder which processes both encoder
output tokens and mask tokens, the input of Feat2W is a combination of encoder output tokens and
weight tokens. Note that the number of weight tokens can be much smaller than the number of
masked tokens. Inspired by recent work [11], we only modulate the weights of a single PaCo-MLP
layer. Thus, we can restrict the number of weight tokens to only 10% of the mask tokens. Figure 1
indicates the high-level design of HyperMAE.

We pretrain our HyperMAE on ImageNet-1k [12] and finetune the pretrained encoder to perform
a downstream classification task. Our HyperMAE achieves comparable ImageNet-1k finetuning
accuracy with the same number of pretraining epochs while using only 72.9% pretraining time using
56.5% GPU memory and 46.5% pretraining time using 88.6% GPU memory. When finetuning
on downstream tasks, for the same number of training epochs, HyperMAE performs comparably,
actually slightly better, on Places 365 classification [13] than the MAE baseline, whereas we observe
inferior performance on iNaturalist2021 [14] classification.
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Figure 2: Block diagram of HyperMAE. The encoder converts the masked input to Feature tokens
(F 12). Feat2W extracts MLP Weight tokens (W 4) from (F 12). Next, the Transformation matrix: T
maps the Weight tokens (W 4) to the PaCo-MLP weight matrix M . PaCo-MLP is used for patch-level
image reconstruction using patch coordinates. An MSE loss is computed between reconstructed and
target patches.

2 HyperMAE

We propose HyperMAE, an MAE design that takes advantage of a novel decoder module for efficient
training. The key intuition of HyperMAE is that instead of directly utilizing a transformer decoder
like in MAE [5] to predict the whole image, we use a Patch Coordinate Multi-Layer Perceptron
(PaCo-MLP) for patch-level reconstruction from the patch coordinates. In contrast to a conventional
transformer in MAE, PaCo-MLP has no attention operations, eliminating the need for a sequence
of trainable mask tokens as input. This distinctive characteristic makes PaCo-MLP compute and
memory efficient in the process of image reconstruction.

HyperMAE consists of encoder and decoder modules. The encoder acts as the feature extractor
as proposed in MAE. The decoder can be further split into the Feat2W and PaCo-MLP modules.
Feat2W converts the visual features from the encoder into the weights of a single layer in PaCo-MLP.
Feat2W is a transformer that operates on feature tokens from the encoder and a small number of
weight tokens (10% of the number of mask tokens used in MAE). Subsequently, PaCo-MLP maps
the coordinates of the masked patches to their corresponding patch pixels, thereby reconstructing the
image. We train the encoder, Feat2W, and PaCo-MLP end-to-end by applying mean squared error
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loss between the reconstructed patches and the input image patches. Figure 2 illustrates the overall
framework.

2.1 Encoder

The goal of the encoder is to extract feature tokens from input patches. These feature tokens will later
be passed through Feat2W to generate the weight matrix for PaCo-MLP. The encoder follows the
same design as the original MAE encoder [5]. First, the image I is divided into patches xp. Random
masking is applied to split patches into two groups: visible xvis and masked xmask. The encoder
takes only the visible patches as input and first converts them to patch embedding. Then, these patch
embeddings are passed through 12 ViT blocks to get feature tokens F 12 = Encoder(xvis). For all
tokens, we use superscript to note the number of ViT blocks the token has passed through.

2.2 Decoder

Different from the MAE decoder, our decoder consists of 2 modules: 1) Feat2W: a shallow transformer
network that maps feature tokens to PaCo-MLP weight matrix. 2) Paco-MLP: a multiple layer
perceptron used as implicit neural representation to reconstruct the image at patch level.

Feat2W The purpose of the Feat2W module is to extract weights from the encoder’s feature tokens
in order to modulate PaCo-MLP for image reconstruction. We specifically modulate a single layer of
PaCo-MLP (without bias), which means that the Feat2W module outputs a matrix M with dimension
h× h, where h represents the hidden layer dimension of PaCo-MLP.
To extract M , we first append the m feature tokens F 12 with n (< m) learnable weight tokens W 0

of same dimension d. The weight tokens can be regarded as similar to the classification token, which
is generally used to extract the global features of the image in ViT. The weight tokens extract the
information needed to derive the MLP weights. The m feature tokens F 12 and n weight tokens W 0

are passed through 4 ViT blocks as a list of m + n tokens to get F 16 and W 4 respectively. Next,
the weight tokens W 4 are projected to the hidden dimension of PaCo-MLP h using a linear layer
Proj. This results in a tensor with shape n× h. But, the target weight matrix M of the PaCo-MLP
is of the shape h × h. We use a learnable transformation matrix T of size h × n to transform the
weight tokens to M . M is derived by a matrix multiplication between T and Proj(W 4), resulting in
a h× h tensor M .

Patch Coordinate-MLP We use PaCo-MLP as an implicit neural representation of the target
image. The PaCo-MLP is a Multi-Layer Perceptron with l layers and h hidden dimension. It takes
the 2-D patch coordinates as inputs and outputs the patch pixels.
Among the l layers, the l−1 layers are shared across all images in the dataset. The weights of a single
layer mod (0 ≤ mod ≤ l − 1) are predicted by Feat2W to provide instance-specific information.
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Figure 3: Sample image recon-
structions by HyperMAE and MAE.
First row: input image, second row:
masked image, third row: recon-
struction by HyperMAE, and fourth
row: reconstruction by MAE.

The layers before layer mod act as positional embedding trans-
formations. After the instance-specific modulation by layer
mod, the next layers transform the modulated output to patch
pixels. We use ReLU as activation for the hidden layers.
Different from usual implicit neural representations, for each
forward pass, we predict all pixels in one patch instead of an
individual pixel because the number of patches (N = HW/P 2)
is much less compared to the number of pixels in the image
(HW ). This reduces the number of passes through PaCo-MLP
and results in a more efficient way to reconstruct the image.
The output dimension of the PaCo-MLP is a flattened patch of
size P 2C. H , W , P , and C are the height, width, patch size,
and channels of the image respectively.
During pretraining phase, the mean squared error between the
input image patches and the reconstructed image patches is
used as the loss function. After the pretraining, the encoder of
HyperMAE is used as ViT Backbone for downstream task fine-
tuning. Feat2W and PaCo-MLP are discarded after pretraining
similar to the transformer decoder in MAE. The pseudo-code
for HyperMAE loss computation is presented in Appendix (Al-
gorithm 1).
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3 Experiments

We benchmark our method and its variants along with baseline MAE [5] using the image classification
task on multiple datasets.

Main results We follow the widely adopted pretrain and finetune training scheme in SSL. The
pretraining is performed on ImageNet-1k [12] for 400 epochs, utilizing ViT Base (ViT-B) architecture.
After pretraining, we finetune all models for 50 epochs with a linear classification head on top of the
global average pooling of all tokens.
Additionally, we investigate the transfer learning capabilities of HyperMAE on two downstream
classification datasets: Places365 [13] and iNaturalist2021 [14]. We start with the model pretrained
on ImageNet-1k and perform fine-tuning for 50 epochs, matching the ImageNet setting. The complete
set of hyperparameters and training details are provided in Table 3 and Appendix 5.3. We report two
versions of HyperMAE: HyperMAE-wo/norm and HyperMAE-w/norm, where the only difference is
that HyperMAE-w/norm is trained with normalized patches (the pixels in target patch are normalized
based on statistics of all pixels belonging to the patch), while HyperMAE-wo/norm is trained on the
original patch pixels as target which is not normalized at the patch level. MAE [5] is trained with
target patch normalization too as it has been shown that normalization improves the performance.

Table 1: Top-1 accuracy. The models are pretrained for 400 epochs and then finetuned for 50 epochs.
Along with accuracy, the pretraining metrics: Time - Walk clock time, Mem: GPU memory, MAC:
Multiply-Accumulate operations are also indicated.

Method Time(hrs) Mem(GB) MAC(G) Epochs ImageNet-1k Places365 iNaturalist2021
HyperMAE-wo/norm 68.27/107.1 12.59/8.03 6.42 400 81.92 58.83 70.99
HyperMAE-w/norm 68.27/107.1 12.59/8.03 6.42 400 82.35 58.89 71.53

MAE 146.93 14.21 9.78 400 82.40 58.72 73.81

We report the top-1 classification accuracy in Table 1, along with the wall clock time, GPU memory
usage, and Multiply-Accumulate operations (MAC) computed during pretraining. The wall clock
time was calculated using 4 NVIDIA TITAN RTX 24GB GPUs. On ImageNet-1k, the finetuning
accuracy of HyperMAE-w/norm is closely comparable with MAE. However, HyperMAE uses
only 72.86% pretraining time with 56.5% GPU memory as MAE and HyperMAE is also efficient
in terms of MAC. Further, if we increase the memory consumption by doubling the number of
images per GPU, HyperMAE takes only 46.5% of training time when using 88.6% of GPU RAM.
HyperMAE outperforms MAE by a small margin on Places365 and underperforms on iNaturalist2021.
HyperMAE presents an efficient alternative design for image reconstruction which can be used to
reduce the computational cost of pretraining.

We also show qualitative results of image reconstruction in Figure 3.

Table 2: Top-1 accuracy: HyperMAE abla-
tion using ViT-Tiny on ImageNet100 under
different number of weight tokens and depth
of Feat2W. More ablations are presented in
the Appendix.

# of weight tokens n 4 8 16 32

Acc1 (%) 77.16 78.02 79.26 78.38

Feat2W depth f 1 4 8

Acc1 (%) 78.46 79.26 78.78

Ablations We also conduct detailed ablations on many
design choices of HyperMAE. Table 2 presents the abla-
tion study on the number of weight tokens and Feat2W
depth, 16 weight tokens and 4 blocks of Feat2W achieve
the best result. More ablations regarding network archi-
tecture, masking ratio and other designed choices are pre-
sented in Appendix 5.2.

4 Conclusion

We present HyperMAE, a new design of Masked
Autoencoder that takes advantage of implicit neural
representation and patch-level pixel prediction. In
comparison with MAE, HyperMAE achieves comparable
ImageNet-1k finetuning accuracy with less GPU memory
and pretraining time. We hope that HyperMAE provides
motivation to further explore INRs in self-supervised visual recognition.

Acknowledgement: The reported research was partly supported by NSF awards IIS-2212046 and
IIS-2123920, and a Stony Brook OVPR seed grant.
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5 Appendix

5.1 Preliminaries

Vision Transformer Vision Transformer proposed in [15] is a transformer-based architecture for images.
The key idea involves converting the input image into discrete tokens so that transformer blocks can process
them. This is done by dividing the image I ∈ R(H×W×C) into non-overlapping patches using a grid size of
H/P × W/P where the size of each patch is P × P × C. Each patch is further flattened to the size P 2C,
representing a token. Further, the grid is flattened to form image representation xp ∈ R(N×P2C), where N
(number of patches) = HW/P 2. Next, these patches are passed through a series of transformer blocks termed as
ViT Blocks. Each ViT block consists of a Multi-head Self Attention Layer and MLP layers.

Masked Autoencoder Masked Autoencoder (MAE) [5] is a transformer-based self-supervised learning
method, that actively masks random patches in an image and predicts the masked patches given the other visible
patches. It contains a transformer encoder to process the tokens visible to the model and a transformer decoder
to reconstruct the masked patches given the output of the visual encoder and an array of learnable mask tokens.
As in standard ViT, first the image I ∈ R(H×W×C) is divided into non-overlapping patches xp. Next, xp is
divided into 2 sets of patches, 1) visible patches, and 2) masked patches. The number of masked patches is mr
* N where mr is a masking ratio. Only the visible patches are passed through the encoder. The output of the
encoder is appended with the learnable mask token along with the positional embedding of masked patches.
Positional embedding guides the reconstruction of different patches using the same mask token. These tokens
are passed through a transformer decoder to reconstruct the image at the patch level.

Self-supervised Learning Self-supervised learning (SSL) [16] aims at training neural networks on un-
labelled data using a pretext task. Leveraging large-scale unlabelled data, SSL is able to learn stronger
representation accelerating and improving downstream task adaptation [17, 18]. One popular direction in recent
SSL works is contrastive learning [19, 20, 21, 22, 23, 24], where the supervision signal is based on the semantic
invariance between dual-stream encoder representations. Another direction is based on self-prediction [5, 7, 25],
which actively masks some information of the data sample, and predicts the masked parts given the left
information [26, 5, 7, 25].

Masked Image Modeling In addition to MAE, there are many directions for using masked image modeling
for self-supervised learning. Other works include BEiT [8], SimMIM [6], and MaskFeat [7]. BEiT takes
motivation from BERT [26] to build a masking-based SSL technique for vision. It uses dVAE tokenizer to treat
image patches as discrete tokens. The masked and visible tokens are passed through transformer layers and then
the masked tokens are predicted using softmax output. SimMIM explores both ViT and Swin [27] architectures.
The encoder processes both visible and masked tokens and the decoder is a lightweight MLP used to predict raw
pixels. The encoder is more computationally expensive when compared to MAE. Further, GreenMIM [28] is a
technique proposed for training Hierarchical Vision Transformers in a masked image modeling setting. They
propose to use group window attention coupled with dynamic programming to obtain optimal grouping and
sizes. MaskFeat is a concurrent work of MAE, where instead of predicting the pixel value as the target for
reconstruction, features like HOG were used. data2Vec [29] proposed a generalized self-supervised learning
for vision, speech, and language. The key idea is to have a student-teacher network setup. The masked input is
passed through the student network and the unmasked input is passed through the teacher network. The teacher is
updated as an exponential moving average of student and the loss is applied between student and teacher output
to learn the student. I-JEPA [30] divides the image into context block and target blocks, which are processed
by context and target encoders. The context encoder’s output is used to predict the target block features. The
target encoder is updated as the exponential moving average of the context encoder. Further, A recent work [31],
proposes architecture-agnostic masked image modeling training that fits both ViT and CNN.
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Implicit Neural Representation Implicit neural representations (INRs) are compact and continuous data
representations. INRs are essentially coordinate-MLPs that map coordinates to the target values with an MLP.
INRs originate from 3D object and scene representations [32, 33, 34, 35]. Specifically, DeepSDF [33] represents
3D shapes as a signed distance function; Occupancy Networks [34] represent 3D shapes as binary classification
networks predicting each 3D coordinate as an inside point or an outside one. NeRFs [35] and more recent
works [36, 37] apply INRs to novel view synthesis. They represent a scene as a neural radiance field mapping
every 3D position to a density and a view-dependent RGB value. With differentiable volumetric rendering,
the whole pipeline can be optimized end-to-end from 2D images shot in multiple views. Beyond 3D vision,
INRs have also been applied to represent 2D images [38, 39] and videos [40]. As the ReLU activation function
may lack the capacity for representing fine details, the sine activation function [41] and Fourier features [42]
of coordinates have been proposed to preserve more data details. To generalize an INR to different targets,
meta-learning [43, 44] and hyper networks [45] are adopted to learn a shared initialization [46] or modulate the
INR weights directly [32, 47, 11].

5.2 Design disucssion

In this section, we discuss the effect of various components of HyperMAE. We experiment using ViT-Tiny
by pretraining for 400 epochs and finetuning for 50 epochs on ImageNet100 [48]. ImageNet100 is a subset
of ImageNet-1k containing 100 classes. We report the top-1 accuracy on the validation dataset. The default
configuration of HyperMAE is described in Table 3.

Table 3: Default setting of HyperMAE.
Property Value
Patch size (P ) 16 × 16
Masking Ratio 75%
Encoder depth (e) 12
Feat2W depth (f ) 4
Number of weight tokens (n) 16
Depth of PaCo-MLP (l) 6
Hidden dim of PaCo-MLP (h) 256
Modulation layer (mod) 1
Target Patch Masked patch only
Normalize Target Patch? No

5.2.1 Number of weight tokens

The Feat2W takes two sets of tokens: m feature tokens and n weight tokens. Table 4 shows the finetuning
accuracy achieved with n = {4, 8, 16, 32}. n = 16 achieves the best accuracy. Under 75% masking ratio
(m = 50), the Feat2W module processes a total of 66 tokens (m+ n = 50 + 16). These 66 tokens represent
approximately 33% of the total tokens (N = 196). In contrast, the transformer decoder used in MAE [5]
operates on the entire set of 196 tokens. Therefore, despite the inclusion of an additional Feat2W module in
HyperMAE, our approach is inherently more efficient in terms of token usage.

Table 4: Finetuning accuracy on ImageNet100 using different number (n) of weight tokens in Feat2W
module.

# of weight tokens n 4 8 16 32

Acc1 (%) 77.16 78.02 79.26 78.38

5.2.2 Depth of Feat2W Block

The finetuning accuracy achieved by different Feat2W depths f is presented in Tables 5. The depth f is the
number of ViT blocks. The results indicate that a depth of f = 4 yields the best accuracy, suggesting that
Feat2W functions effectively with a shallow transformer architecture.

5.2.3 Sharing ViT Blocks

Within the HyperMAE framework, both the encoder and Feat2W employ ViT blocks of the same type. This
similarity enables us to explore the sharing of ViT layers between the encoder and Feat2W components. Since
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Table 5: Finetuning accuracy on ImageNet100 using different number f of ViT Blocks in Feat2W
module.

Feat2W depth f 1 4 8

Acc1 (%) 78.46 79.26 78.78

vseperated vshared vmerged

F12

W0

Feat2W
ViT

(4 blocks)ViT
(12 blocks)

Encoder 12 blocks Encoder 12 blocks

F8

W0

ViT
(8 blocks)

Encoder 12 blocks

F8

W0

 Feat2W
ViT

(4 blocks)ViT
(8 blocks)

  Feat2W
ViT

(8 blocks)

Figure 4: Different versions of HyperMAE. In vseparated, the encoder and Feat2W do not share
ViT Blocks. In vshared, Feat2W shares half of the ViT Blocks with the encoder. In vmerged, Feat2W
shares all blocks with encoder. Purple color indicates the ViT Blocks belonging to the encoder. Blue
color represents the blocks that are exclusively part of Feat2W.

the encoder is used as the backbone for downstream tasks, the ViT blocks belonging only to Feat2W are dropped
after pretraining. Figure 4 illustrates the different ways of ViT block sharing between the encoder and Feat2W.
In vseparated, no blocks are shared between the encoder and Feat2W. In vshared, Feat2W consists of 8 blocks,
and 4 blocks are shared with the encoder. In vmerged, Feat2W has 4 blocks and shares all 4 blocks with the
encoder. In vmerged, all transformer blocks will be used for downstream task finetuning as part of the encoder.
In vshared and vmerged, the weight tokens are inputted at the first shared ViT block.

Table 6 shows the finetuning accuracy achieved by the various versions. Our default version vseparated

outperforms other versions. An intuition behind this observation is that, under a shared scenario, some layers
of encoder observe weight tokens during pretraining and these weight tokens are not used in finetuning. This
creates a discrepancy between the type of the tokens seen by the encoder during pretraining and finetuning, thus
can affect negatively finetuning accuracy.

Table 6: Finetuning accuracy on ImageNet100 using a different number of shared ViT blocks between
encoder and Feat2W modules. e: Encoder depth, f : Feat2W depth, s: number of shared ViT blocks
between encoder and Feat2W.

Version e s f Acc1 (%)
vseparated (default) 12 0 4 79.26

vshared 12 4 8 78.44
vmerged 12 4 4 77.18

5.2.4 Modulation Layer

In our default configuration, we utilize mod = 1. The performance results for different values of mod are
presented in Table 7. When mod = 0, the performance is notably low. This can be attributed to the absence of a
layer before mod to modify the positional encoding of the coordinates. On the other hand, similar performance
is observed for mod = 1 and mod = 2. However, higher values of mod yield poorer results, likely due to
insufficient layers after modulation to accurately predict patch pixels. This finding aligns with the findings
in [11].

Table 7: Finetuning accuracy on ImageNet100 by modulating layers at different indices mod in PaCo-
MLP. The results indicate that mod = 1 and mod = 2 produce comparable results and outperform
modulation at other layer indices.

mod 0 1 2 3 4

Acc1(%) 76.64 79.26 79.36 78.54 76.20
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5.2.5 Depth of PaCo-MLP

Next, we experiment with the depth l of PaCo-MLP. Table 8 shows the finetuning accuracy with various values
for l. l = 6 achieves the best finetuning accuracy. l = 3 achieves very low accuracy compared to l > 3, as there
is only one layer after modulation, and this might not be sufficient to represent the image.

Table 8: Finetuning accuracy on ImageNet100 using different number of layers (l) in PaCo-MLP.
Accuracy increases with a number of layers up to 6 layers.

PaCo-MLP Depth l 3 4 5 6 7

Acc1 (%) 76.88 78.16 78.72 79.26 78.66

5.2.6 Hidden dim of PaCo-MLP

It has been a standard practice to use MLP with hidden dimension h = 256 in implicit neural representations
[47]. Table 9 presents the results for h = {128, 256, 512}. Our analysis reveals that the best performance is
obtained when h is set to 256. On the other hand, using h = 128 may be insufficient to adequately represent the
image, while employing h = 512 could result in a stronger decoder but weaker representation learning by the
encoder.

Table 9: Finetuning accuracy on ImageNet100 using different hidden dimesions h for PaCo-MLP
layers.

h 128 256 512

Acc1 (%) 78.50 79.26 78.64

5.2.7 Masking Ratio

The masking ratio plays a crucial role in determining the amount of information available to the MAE for image
reconstruction. A higher masking ratio increases efficiency by allowing the encoder to exclusively process
visible patches. We explore the impact of different masking ratios on HyperMAE and report the corresponding
accuracies in Table 10. Consistent with the findings of MAE [5], we observe that a masking ratio of 75% yields
the best result. This implies that the optimal masking ratio is dependent on the encoder and remains unaffected
by the specific decoding approach employed for image reconstruction.

Table 10: Finetuning accuracy on ImageNet100 under different masking ratios. Inline with MAE [5],
HyperMAE achieves the best result with 75% masking.

Masking Ratio 0.45 0.60 0.75 0.90

Acc1 (%) 77.96 78.50 79.26 77.38

5.2.8 Target Patch

In the default setting, we only predict masked patches. Table 11 indicates that predicting masked patches only
results in better accuracy. This observation is in line with MAE [5]. Predicting visible patches can make image
reconstruction easier, and thus the encoder might not learn strong representation during pretraining.

Table 11: Finetuning accuracy on ImageNet100 under different configurations of target patches. As
in MAE, applying loss to only masked patches achieves the best accuracy.

Target Patches Acc1 (%)
All Patches 78.04

Masked Patches Only 79.26

5.3 Architecture details

MAE We use the ViT-Base version of MAE presented in [5]. Encoder has 12 ViT blocks with 768 dimension
and 12 heads. The decoder has 8 ViT blocks with 512 dimension and 16 heads.
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HyperMAE HyperMAE has 3 networks: Encoder, Feat2W, and PaCo-MLP. Encoder has 12 ViT blocks with
12 heads and a dimension of 768. Feat2W has 4 ViT Blocks with 12 heads and a dimension of 768. The number
of weight tokens in Feat2W is 16. PaCo-MLP is an MLP with 256 hidden dimension and 768 output dimension.
For the ViT-Tiny version used in section 5.2, ViT blocks have 3 heads and 192 dimension. Similar to MAE,
HyperMAE also uses class token as additional input to the encoder along with image patches.

5.4 Training details

We built our model using the MAE [5] codebase. Table 12 indicates the configuration of pretraining on
ImageNet-1k. Table 13 presents the details for finetuning on ImageNet-1k, Places365, and iNaturalist2021. For
ImageNet-100 pretraining and finetuning, we use the same settings as ImageNet-1k but reduce the batch size to
512.

Table 12: Pretraining configuration on ImageNet-1k.
config value
optimizer AdamW
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1=0.9, β2=0.95
batch size 4096
learning rate schedule cosine decay
warmup epochs 40
augmentation RandomResizedCrop
training epochs 400

Algorithm 1: PyTorch-style pseudocode for HyperMAE loss computation
# Learnable modules: Encoder: 12-layer ViT; Feat2W: 4-layer ViT; PaCo-MLP: l-1
linear layers; W_0: Weight tokens; T: Transformation matrix; Proj: single
linear layer;

# Input image: I
def compute_loss(I):

# Encoder
x_vis, x_masked = RandomMask(Patchify(I))
F_0 = x_vis
F_12 = Encoder(F_0)

# Decoder-Feat2W
W_4, F_16 = Feat2W(concat([W_0, F_12]))
M = torch.matmul(T, Proj(W_4))

# Decoder-PaCo-MLP
pco = PatchCoordinates(x_masked)
z = PositionalEmbedding(pco, h)
# MLP layers before modulation
for i in range(mod):

z = PaCo-MLP[i](z)
# Modulation using multiplication
z = torch.matmul(z, M)
# MLP layers after modulation
for i in range(mod, l-1):

z = PaCo-MLP[i](z)
# Patch & Channel size P=16, C=3
z = z.reshape(..., P, P, C)

# Compute loss
loss = MSELoss(z, x_masked)
return loss
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Table 13: Finetuning details for classification on Imagenet-1k, Places365, iNaturalist2021.
config value
optimizer AdamW
base learning rate 1e-3
weight decay 0.05
optimizer momentum β1=0.9, β2=0.999
layer-wise lr decay 0.75
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 50
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path 0.1
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